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Pattern formation in a metastable, gradient-driven sandpile
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With a toppling rule which generates metastable sites, we explore the properties of a gradient-driven sand-
pile that is minimally perturbed at one boundary. In two dimensions we find that the transport of grains takes
place along deep valleys, generating a set of patterns as the system approaches the stationary state. We use two
versions of the toppling rule to analyze the time behavior and the geometric properties of clusters of valleys,
also discussing the relation between this model and the general properties of models displaying self-organized
criticality.
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I. INTRODUCTION

Sandpile models were first introduced by Bak, Tang, a
Wiesenfeld as explicit models of self-organized critical
~SOC! @1#. Since then a vast literature has analyzed sand
properties resulting from various definitions of the toppli
rules; see Refs.@2–4# for recent reviews.

In this paper we present the relaxation and station
properties of a gradient-driven sandpile model with a me
stable toppling rule. Interest in this type of work originat
from seismology, where quasiperiodic behavior of seism
activity has been observed for certain faults and investiga
with SOC-related models@5#. The model we present can de
scribe characteristics of systems undergoing rheologic fl
e.g., in the mining environment or tectonic plates. In su
systems stress can accumulate in various parts of the sy
for long periods of time, in contrast to normal fluid flow i
which the local relaxation time is much smaller than t
hydrodynamic time scale.

Furthermore, we believe that the properties we desc
are of wider interest to other fields of nonequilibrium stat
tical mechanics where, e.g., stripe patterns similar to th
that we observe appear in a variety of extended syste
including sand and biological systems@6,7#. Our approach is
quite general since it utilizes only a consistent local order
of topplings, following the instantaneous maximum gradie
and the notion of a metastable site. Furthermore, the m
we propose shows a quasiperiodic time behavior, a fea
already mentioned for SOC-related models in@8# and ex-
plored recently in a similar context by Chapman@9#.

The additional feature of the proposed model is the em
gence of a spatial structure for the metastable configura
driven by the transport of grains through the system. A stu
of this spatial configuration in and close to the station
state is the main objective of the following sections.

The paper is organized as follows. In Sec. II we descr
the toppling rule and its connection with related models.
Sec. III we present the one-dimensional~1D! variant of the
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model and in Sec. IV the results for the 2D version, follow
by conclusions in Sec. V.

II. THE TOPPLING RULE

We consider a gradient-driven sandpile with a toppli
rule which takes into account not only whether a loc
threshold gradient is exceeded, but also whether this si
tion is the result of theaddition of a grain to the site unde
evaluation. We introduce this rule as a simple description
the dynamical weakening introduced in Ref.@5#.

The general description of the dynamics is as follow
Grains are dropped on the sites in a designated region o
lattice called the source zone; following a relaxation ru
to be described in detail subsequently, grains can cha
their position on the lattice until they reach an open bou
ary and leave the system~lattice!. In short, the model de-
scribes the transport of grains from the source zone to
open boundary.

Let us now analyze in detail the toppling rule in 2
on a square lattice. At a given moment of time each site
the lattice has an associated heighth of the grain column,
and we also associate with it the set of gradientsG
5$gl ,gr ,gu ,gd%, where ga5h2ha and ha
P$hl ,hr ,hu ,hd% is the height of the sand column at the fo
nearest neighbor sites left, right, up, and down.

We use two thresholds in our algorithm.~i! gmax is the
stability threshold for the maximum ofG. If at least one of
the gradients ofG is larger thangmax, the site is called
metastable. It topples only if this state is the result of t
receipt of a grain, either from a neighboring site which h
toppled, or when a grain was dropped on the site at the s
of an updating run. Metastable states do not topple whe
gradient larger thangmax develops as a result of the loss
grains on neighboring sites.~ii ! gmin is the minimum positive
gradient, which fixes the condition to stop the toppling; w
call it the activity threshold. Once a site starts toppling,
sends grains, one at a time, along the instantaneous m
mum gradient ofG to its nearest neighbors, provided th
max$G%.gmin. If there is more than one instantaneous ma
mum gradient, a random choice is made among them. If
site topples it will send grains to some of its nearest nei
©2004 The American Physical Society15-1
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L. ANTON AND H. B. GEYER PHYSICAL REVIEW E69, 016115 ~2004!
bors. We refer to the process of relaxation of one site a
‘‘toppling’’ and to the sites that have received sand gra
during toppling as ‘‘updated sites.’’ Their coordinates a
kept in a list for the next step of the dynamics.

In one time step all the updated sites produced at
previous time step are checked for stability and, if unsta
they relax according to the above algorithm. We specify t
once a site is unstable and chosen to topple the algor
will finish the toppling sequence at the site and then w
move to another site. Physically, this is equivalent to negle
ing the toppling time.

Because we always topple along the instantaneous m
mum gradient we can introduce a time order of the topplin
On physical grounds it seems reasonable to assume tha
site that first receives a grain will topple first at the next tim
step, if it is unstable. We model this using a first in, first o
list: the coordinates of the updated sites are stored seq
tially in a list. In one time step the algorithm reads the l
sequentially from the first entry: if the current site is me
stable, it is toppled and the sites that are updated in
process are stored in the list for the next time step; if
current site is stable, it is simply discarded from the list. W
refer to this time ordered toppling rule by the acrony
TOTR. ~Recall that a gradient toppling rule implies a no
Abelian sandpile where the order of toppling has defin
consequences; see, e.g., Refs.@3,4#.!

Alternatively, we can disregard the time ordering and
lect at random a site from the list of updated sites for insp
tion of its stability. In Sec. III we make a comparative stu
of these two variants of the toppling rules in the 2D case.
refer to this randomly ordered toppling rule by the acron
ROTR.

In other words, we can consider one time step of
dynamics,Dt, divided intoN bins (N being the number of
sites of the lattice!, each bin containing at most the coord
nates of one updated site since in a time intervalDt/N we
can assume that typically at most one site is active. An ac
site generates a set of updated sites when topples. In
description the TOTR fills the bins of the next time step
the order in which the updated sites are produced at the
rent time step; meanwhile the ROTR fills the bins of the n
time step randomly. Evidently, most of the bins are empty
the number of updated sites is much smaller than the sys
size and the algorithm discards the empty bins using the
of updated sites.

Thus, to resume, at a given instant of time we have th
kinds of sites in our system:~i! inactive sites with all asso
ciated gradients less thangmax; ~ii ! metastable sites, which
have at least one associated gradient larger thangmax; and
~iii ! active or unstable sites, which are the toppling sites
the given instant~they are perturbed metastable sites!.

One observation about the times scales in the mode
now in order. We can think in terms of the existence of th
time scales. The smallest one is the time in which a site
toppled,t t . The second time scale is the surviving time of
updated unstable site,ts . The dynamics of our model is suc
that ts@t t . The third time scale is the time between tw
droppings of grains on the latticeta . After one grain is
dropped the system relaxes globally through an avalanch
01611
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topplings. Here we are ensured thatta@NLts , whereNL is
the average number of time steps for the system to relax
a given sizeL.

We define the size of an avalanche as the total numbe
topplings generated in a given relaxation process after
dropping.

We stress that our toppling rule allows and introduc
sites with unstable gradients after one avalanche has ta
place. They emerge as the neighbors of the toppling~active!
sites toward which the gradient is negative. As an unsta
site topples, the negative gradient increases in abso
value, but the sites along such a directiondo not receive any
grains and hence are not toppled, according to our ru
When topplings in such an avalanche stop, such a site
accordingly have a maximum gradient that is larger than
threshold valuegmax. We call such a site metastable—it ca
sustain gradients larger than the threshold as long as i
mains unperturbed. Physically, we associate this rule wit
certain local metastability of the medium through whi
transport takes place.

We make the observation that the metastable sites ma
important in the regions where there is no dropping of grai
since they can live much longer than the average time
tween two droppings on the same site.

As elaborated in the next two sections, this model h
properties similar to the extended version of the forest
model described in Ref.@8#, that is, quasiperiodic behavior i
time and a spiked avalanche distribution.

To link further with previous studies, it is also of intere
to understand the relation between our proposed model
the condition for SOC in sandpile models. References@8,10#
present an analysis to establish the generic condition
model has to satisfy in order to present SOC. The auth
show that in two dimensions, or larger, and for conservat
dynamics, an intrinsic spatial anisotropy is required to p
duce SOC for models which can be treated perturbativ
The model we propose has a conservative toppling rule~the
noise is also conservative in the region where no dropp
takes place! and evolves in two spatial dimensions und
conditions of anisotropy, but it does not present the featu
of SOC for the avalanche distribution.

We think that the explanation of this anomaly resides
the fact that the stationary state of this model cannot be c
acterized as a perturbation of an interaction-free model.
we present in full detail in Sec. IV, the stationary state of t
model is characterized by the appearance of deep and na
valleys along the direction of grain transport. These featu
cannot be obtained as a perturbation of a diffusionlike rel
ation.

We also make the observation that in the proposed t
pling rules there is no external noise term, e.g., similar to
noise term in the Langevin equation. The randomness in
model comes from the selection of the toppling order in
case of the ROTR, and from the random choice of the t
pling direction in the case of a degenerate maximum gra
ent. Another source of randomness in these models is
‘‘internal noise,’’ in the sense discussed in Ref.@11#, coming
from the fluctuations of the many particle dynamics whi
may be present even in the case of pure deterministic mi
5-2



b
f

ha

lit

io
ne
na

W

-

ci
o

y-
e
at

te
ha

se

ab
il

io

le
sit
e

t

e

e
x

nc
ce

i
av

i-

-
is

the
on,
port
rage
op-
port

a

o-
fer-

nd-

one
ad
lso
ws
pro-

tice
in

the
do

this

wo
re

und

PATTERN FORMATION IN A METASTABLE, . . . PHYSICAL REVIEW E 69, 016115 ~2004!
scopic equations. There is no straightforward connection
tween the ‘‘internal noise’’ and the ‘‘external noise’’ term o
a Langevin equation.

In connection with this theoretical aspect, we mention t
recently a model with metastable states~‘‘sticky grains’’ is
the term used by the authors! but with a height-driven top-
pling rule and dissipative dynamics was studied in Ref.@12#
and shown to be in the directed percolation universa
class.

In the following sections we present a detailed discuss
of the 1D case and a statistical analysis of the mentio
patterns of metastable states for the 2D case in the statio
state and close to the stationary state.

III. THE 1D CASE

We start our study with a one-dimensional sandpile.
choose a lattice of dimensionL with an open boundary atx
5L and with a wall atx50. The grains are injected ran
domly in the regionxP@1, w#, with 1<w<L, called the
source zone. We choose the stability thresholdgmax52 and
the activity thresholdgmin51. Let us analyze in detail the
appearance of a metastable site in 1D lattice. For simpli
we start with an initial stair configuration which has a mon
tonic step of max$G%52 descending fromx51 to x5L. This
configuration is marginally stable; if we drop a grain an
where on the lattice an avalanche occurs. First we consid
restricted source zone where grains are only droppedx
51. A grain dropped atx51 will then topple untilx5L for
the chosen configuration. Atx5L an extra toppling takes
place sincegmin51, and the toppling of the disturbed sta
continues as long as the maximum gradient is larger t
gmin . @Formally, the boundary condition is thath(L11)
50, h(0)5`.# When the avalanche stops, we therefore
that the gradient between the sitesL21 andL is 3, hence we
have a metastable site atL21. Now if we drop a new grain
at x51, the same consideration shows that the metast
configuration moves toL22. The process continues unt
the metastable configuration reaches the sitex51. After that
a series of avalanches reconstructs the initial configurat
adding a grain at siteL, then atL21, and so on.

The characteristic time period of the system is control
by the time in which the metastable site travels from the
L to the site 1. This kind of behavior is preserved if we us
source zone withw.1 but with the ratiow/L small. The
avalanche size distribution is characterized by a peak at
end of the distribution support~see Fig. 1!, which results
from the avalanches produced while the metastable sit
present in the transport zone betweenw11 and L. The
smaller size avalanches are produced after the metastabl
has reached the source zone. Figure 1 shows that for fi
ration w/L the avalanche distribution scales withL.

We close this section with the observation that the disti
tion between the TOTR and ROTR is irrelevant in 1D sin
typically there is only one updated site in the algorithm.

IV. THE 2D CASE

A. General features

In this section we compare the behavior of the system
two dimensions with the simple and well understood beh
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ior in 1D. We choose for study a rectangular lattice of sizeL
with an open boundary condition atx5L and a wall atx
51, with a periodic boundary condition along they axis. A
simulation starts with the initial condition specified by a un
form slope of size 1 per lattice step along thex axis, the
height atx5L being 0. The initial slope along they axis is
set to 0. We choose the stability thresholdgmax54 and the
activity thresholdgmin51. ~We have also performed simu
lations starting with an empty lattice; the stationary state
the same and only the transient regime is longer.! We use
both toppling rules:~i! with the time ordered toppling rule
and ~ii ! with a random ordered toppling rule.

The grains are dropped randomly atx51, yP@1,L#. This
source configuration allows us to explore the behavior of
transport region of the sandpile under minimal perturbati
since only one grain topples at the boundary of the trans
region and the metastable sites do not have their ave
lifetime constrained by the average time between two dr
pings on the same site; hence the structure of the trans
zone is influenced only by a minimal flow of grains.

The initial condition we start with can be viewed as
collection of interacting 1D sandpiles oriented along thex
axis, and consequently one might expect to see tw
dimensional avalanches created by the interaction of dif
ent metastable sites.

Surprisingly we found that in the stationary state the sa
pile develops a structure of valleys along thex direction
separated by terraces of sites in the metastable state. As
can see from Fig. 2 the valleys are not purely 1D; inste
they fluctuate slightly along the transverse direction and a
show branched structures. Visual inspection of Fig. 2 sho
that the transverse fluctuations and branching are more
nounced in the case of the TOTR algorithm.

After the system reaches the stationary state we no
that in the case of the TOTR the valleys do not change
time except for small fluctuations which appear toward
open boundary. In the case of the ROTR the valleys
change in time even in the stationary state. We illustrate
in Fig. 2 where the snapshots~c! and ~f! follow after 106

droppings on the snapshots~b! and ~e! in the stationary re-
gime. We observe that in the case of the TOTR the t
configurations are almost identical, while for the ROTR the
is a clear difference between the two configurations aro

FIG. 1. The avalanche size distribution in 1D atL5128, 256,
512, and 1024 with the fixed ratiow/L50.1. We notice the peak in
the top right corner of the plot.
5-3
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L. ANTON AND H. B. GEYER PHYSICAL REVIEW E69, 016115 ~2004!
the points denoted with the symbol% . We return to this
point when we analyze the cluster size distribution and
correlation length behavior.

Another observation which we can make from visual
spection of the stationary patterns, is that the structure of
valleys changes with system size. From Fig. 3 we see tha
L5128 the valleys are predominantly one dimension
When the lattice size increases, transverse fluctuation
branches appear.

FIG. 2. The patterns created by sites at the bottom of valleys
a 5123512 lattice during the transient regime~a!, ~d!, and in the
stationary regime~b!,~c!,~e!,~f!. On the left side the dynamics i
TOTR and on the right side the dynamics is ROTR. The dots, o
merged to lines, mark the sites which have at least two nega
gradients larger in absolute value thangmax, i.e., at least two neigh-
bors are metastable.~See the text for discussion of the symbols% .!

FIG. 3. The structure of the bottom of the valleys as a funct
of the lattice sizeL. From top to bottomL5128, 256, 512, 1024;
TOTR on the left side and ROTR on the right side. The source is
the left side and the open boundary on the right side of each pa
The vertical lines mark the open boundary.
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We obtain further insight about the nature of the statio
ary state if we analyze the time evolution of the height p
file alongz ~perpendicular to thex-y plane! at the boundary
of the source zone. In Fig. 4 we show the time evolution
the height profile alongy for x51 andx52. We see that in
the transient state, for both toppling rules, the source z
(x51) has heights close to the heights of thex52 profile. In
this configuration a grain dropped in the source zone w
move more probably along thex axis, leaving the source
zone in one or a few steps. In contrast, in the station
regime we see that a completely different configurat
arises. The average height of the source zone is significa
smaller than the average height of thex52 profile. A grain
dropped in the source zone will therefore first travel alo
they direction, until it meets a minimum which is connecte
with a valley@see Figs. 4~b! and 4~e!#. In the stationary state
the profile at the source remains unchanged for both
TOTR and ROTR as Figs. 4~b!, 4~c!, 4~e!, and 4~f! show.
The data are taken from the same configuration presente
Fig. 2.

We close the presentation of general features of the mo
with an analysis of the avalanche size distribution in t
stationary state. Figure 5 shows for both dynamics that
size distribution is not power-law-like, but rather similar
the 1D case~compare Fig. 1!, although with a richer struc-
ture of peaks. We remark that a scaling proportional w
lattice sizeL holds approximately for the plateau region a
the first peak in the distribution, as in the 1D case. Since
valley length scales withL, we think that this feature of the
avalanche size distribution is determined by the propaga
of the avalanches along the valleys.

B. Cluster characterization

Having presented a visual description of the valleys in
previous subsection, we now consider a quantitative

r

n
e
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n
el.

FIG. 4. The profile of the sandpile along the source linex51
~continuous line! and along the line next to it,x52 ~dashed line!,
for the TOTR ~left! and ROTR~right!. We show one moment in
time of the transient regime~a! and~d!, while ~b!,~c! and~e!,~f! are
in the stationary regime. The coordinate is the height in numbe
grains. Note the change of the profile height with time, and the
that the profile is unchanged in the stationary regime.
5-4
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PATTERN FORMATION IN A METASTABLE, . . . PHYSICAL REVIEW E 69, 016115 ~2004!
proach. For a numerical description of the patterns show
Figs. 2 and 3 we concentrate on the clusters formed by
bottom of the valleys. We define a site to be at the bottom
a valley if it has associated with it two or more negati
gradients larger in absolute value than the threshold, i.e
least two neighbors are metastable.

A set of bottom of the valley sites is said to form a clus
if they can be spanned by a path stepping only to nea
neighbors along thex or y directions.

We analyze the following quantities: the total number
clustersNc(t) as a function of time, the total cluster ma
Mc(t) as a function of time, the longitudinal and transver
correlation lengthsj i and j' , and, finally, the cluster size
distribution at a given time,N(s,t).

We start with the time evolution of the total number
clustersNc(t) and the total massMc(t)5(ssN(s,t). We
remind the reader that in this section a time step correspo
to a grain drop and the subsequent relaxation, and there
we neglect the relaxation time per avalanche.

The data were collected over a single run starting with
initial condition specified at the beginning of this section. W
have collected the data for one point at time intervals
3104, 105, 106, and 53106 for the system sizesL5128,
256, 512, 1024, respectively. To eliminate the short ti
fluctuation we averaged at each point over a window of s
104 steps from which we selected 100 moments equ

FIG. 5. The avalanche size distribution:~a! TOTR, ~b! ROTR.
The system size takes the valuesL5128,256,512,1024. The platea
region and the first peak scale approximately with system sizeL.
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spaced. We mention here that we are constrained to
single runs since the characteristic time in which the sys
reaches the stationary state scales approximately with
third power of the lattice linear size.

Figure 6 shows that the total mass of the clusters and
number of clusters have a jump before the stationary sta
reached. The jump is more pronounced in the case of
TOTR and is clearer for large system size. We observe
the time to reach the stationary state scales with the t
power of system size. This fact can be explained if we
sume that the average slope of the system converges
nonzero value as the system size is increased; then the
ume of the accumulated grains scales likeL3, which deter-
mines the minimal number of time steps necessary to d
the system to the stationary state.

In studies of this kind of model it is customary to test t
data for scaling behaviorf (t,L)5La f̃ (t/Lz). Our plot shows
that one can define the dynamic scaling exponentz53 for
the relaxation time, but a simple proportionality with th
system size at a given power is not sustainable, although
L5512, 1024 the assumption holds acceptably~the corre-
sponding lines are parallel within a good approximatio!.
However, the scaling hypothesis does not hold for the sys
size L5128, suggesting that boundary effects have a ch
acteristic length of this order of magnitude. From Fig. 3 w
see that close to the source zone the valleys do not pre
branching. We note also that close to the open bound
valleys do not form, which makes it plausible that the scal
is strongly affected by finite size effects.

For a geometric characterization of the clusters we de
the following correlation lengths, following Ref.@13#:

FIG. 6. Number of clusters~top! and their total mass~bottom! as
function of time for the TOTR and ROTR. In ascending order t
plots correspond to the lattice sizesL5128, 256, 512, 1024.
5-5
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j i
25

2(
s

Ri ,s
2 s2ns

(
s

s2ns

, ~1!

whereRi ,s
2 is the mean square distance along the longitu

nal, x, or transverse,y, direction between the sites belongin
to one cluster averaged over all clusters of sizes, which can
be expressed in the formula

2Ri ,s
2 5

1

ns
(
a51

ns 1

s2 (
ma ,na

uxma

( i ) 2xna

( i )u2. ~2!

Here the indexi 5i ,' indicates the longitudinal and trans
verse directions,xna

( i ) denotes the coordinate of the sites b

longing to theath cluster of sizes, andns is the number of
clusters with sizes. In other words, for each cluster from
given configuration of the lattice we compute its avera
square displacement from the center of mass in transv
and longitudinal directions with Eq.~2!. Next we average
over all the clusters from a configuration with weights spe
fied by Eq.~1!.

Figure 7 shows that the longitudinal correlation leng
jump before the stationary regime for system sizesL5512
and 1024, similar to the behavior of the cluster number a
the total mass~see Fig. 6!.

It is intriguing that the longitudinal correlation lengt
shows chaotic behavior in the transient state as the sys
size increases, especially in the case of the ROTR, e
though we have averaged out the short time fluctuations.
the other hand, the time evolution of the total number
clusters does not present fluctuations of the same rela
magnitude~see Fig. 6!. We conjecture that the large fluctua
tion of the correlation lengths in the case of the ROTR
related to a high frequency of coalescence and breaking u
clusters before the stationary state is reached.

FIG. 7. Correlation lengthsj i ~top! andj' ~bottom! as function
of time @L5128 ~1!, 256 (3), 512 (*), 1024 (h)]. Left panels
are for TOTR, right panels for ROTR.
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The transverse correlation presents the same kind of
otic behavior. In any event, we see thatj'>1 ~which is
physically significant! only for the TOTR withL>512. Vi-
sual inspection of Figs. 2 and 3 shows that it is this situat
in which a significant number of branchings are observab

To elucidate this point further, we study, for both types
dynamics TOTR and ROTR, the cluster size distribution
various moments of time for the lattice sizeL51024. In Fig.
8 we plot the cluster distribution at two consecutive mome
in the transient regime (t158.73108, t258.753108) corre-
sponding to a minimum and a maximum ofj i observed in
Fig. 7, that is,j i(t1),j i(t2), and in the stationary state (t3
51.843109, t451.8453109) with the same condition
j i(t3),j i(t4) .

The plots show that in the transient regime the states w
larger j i have a significant population of large clusters f
both dynamics. In the stationary state in the case of
TOTR the cluster distribution changes very little, while f
the ROTR the large size tail presents observable fluctuati
This observation seems to point to a signature for a stat
ary state of the ROTR in which large scale fluctuations
pear for a cluster of valleys, as shown in Fig. 2.~We have
also checked this for other configurations.!

To summarize the two-dimensional behavior, we ha
studied the geometric and relaxation properties of the tra
port region of the sandpile. We found that as the syst
approaches the stationary state, clusters of deep valleys
pear. Specifically, we explored the time evolution for t
total number of clusters, the total mass of the clusters,
correlation lengths~transverse and longitudinal! of the clus-
ters, and the cluster size distribution at various moments
time. The main distinction between the TOTR and ROTR
the fact that the configurations obtained from the ROTR
strongly affected by fluctuations of the longitudinal corre
tion length, which we have shown to be associated with fl

FIG. 8. Histogram of cluster sizes at four moments of time. W
taket1 andt2 in the transient regime withj i(t1),j i(t2) andt3 , t4

in the stationary regime withj i(t3),j i(t4). We mention that data
are averaged around each time momentt i , i P@1,4#, as described at
the beginning of Sec. IV B.
5-6
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tuation in the tail of the cluster size distribution.
The characteristic time to reach the stationary state sc

with the system size asLz, with z'3, but the magnitude o
the observed quantities does not follow a clear power
type of scaling. The range of data we have does not allow
to decide if this is due to strong correction from bounda
effects, or if scaling is genuinely broken. The setting in o
chaotic regime at largeL complicates the analysis even fu
ther.

V. CONCLUSIONS

We have analyzed a gradient-driven sandpile model w
local metastable states using two variants of the topp
rule: one which keeps the time order of the list of upda
sites and one which selects a site from the list at random.
found that in 2D metastable sites generate a rough lands
with deep valleys along which grains are transported.

The valleys are organized in clusters with a pronoun
development along the direction of grain flow (j i@j'). For
the time ordered toppling rule, we found that transverse c
relations develop as the system size increases. Also, for l
system size we observed chaotic behavior for the correla
lengths, associated with fluctuations in the size distribut
of the clusters.
01611
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The avalanches produced in the resulting valleys h
one-dimensional properties and show non-SOC behavior.
believe that this is an example of a model in the strong c
pling regime which escapes the classification made in R
@10# for models that can be treated perturbatively. Yet we
not have an exact mapping between our discrete model
the continuum Langevin equations used in Ref.@10#. This
may be another source of the discrepancy. At the mom
this is a purely numerical study of a descriptive nature.
clarify the previous uncertainties further analytical insig
seems to be required. It would, e.g., be interesting to ded
a simple mean field kind of equation capable of explain
the irregular time behavior at largeL for the quantities de-
scribed in the paper.
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