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Pattern formation in a metastable, gradient-driven sandpile
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With a toppling rule which generates metastable sites, we explore the properties of a gradient-driven sand-
pile that is minimally perturbed at one boundary. In two dimensions we find that the transport of grains takes
place along deep valleys, generating a set of patterns as the system approaches the stationary state. We use two
versions of the toppling rule to analyze the time behavior and the geometric properties of clusters of valleys,
also discussing the relation between this model and the general properties of models displaying self-organized
criticality.
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[. INTRODUCTION model and in Sec. IV the results for the 2D version, followed
by conclusions in Sec. V.

Sandpile models were first introduced by Bak, Tang, and
Wiesenfeld as explicit models of self-organized criticality
(SOQ [1]. Since then a vast literature has analyzed sandpile
properties resulting from various definitions of the toppling We consider a gradient-driven sandpile with a toppling
rules; see Refd2—-4] for recent reviews. rule which takes into account not only whether a local

In this paper we present the relaxation and stationargyhreshold gradient is exceeded, but also whether this situa-
properties of a gradient-driven sandpile model with a metation is the result of thexddition of a grain to the site under
stable toppling rule. Interest in this type of work originatesevaluation. We introduce this rule as a simple description of
from seismology, where quasiperiodic behavior of seismidhe dynamical weakening introduced in RE5].
activity has been observed for certain faults and investigated The general description of the dynamics is as follows.
with SOC-related models&]. The model we present can de- Grains are dropped on the sites in a designated region of the
scribe characteristics of systems undergoing rheologic flowattice called the source zone; following a relaxation rule,
e.g., in the mining environment or tectonic plates. In sucho be described in detail subsequently, grains can change
systems stress can accumulate in various parts of the systehreir position on the lattice until they reach an open bound-
for long periods of time, in contrast to normal fluid flow in ary and leave the systefifattice). In short, the model de-
which the local relaxation time is much smaller than thescribes the transport of grains from the source zone to the
hydrodynamic time scale. open boundary.

Furthermore, we believe that the properties we describe Let us now analyze in detail the toppling rule in 2D
are of wider interest to other fields of nonequilibrium statis-on a square lattice. At a given moment of time each site of
tical mechanics where, e.g., stripe patterns similar to thosthe lattice has an associated heighdf the grain column,
that we observe appear in a variety of extended systemsnd we also associate with it the set of gradie@s
including sand and biological systerf&7]. Our approachis ={g,,9,,9,.94}, where  g,=h—-h, and h,
quite general since it utilizes only a consistent local orderinge {h, ,h, ,h,,hg} is the height of the sand column at the four
of topplings, following the instantaneous maximum gradient,nearest neighbor sites left, right, up, and down.
and the notion of a metastable site. Furthermore, the model We use two thresholds in our algorithrfi) g,y IS the
we propose shows a quasiperiodic time behavior, a featurstability threshold for the maximum d. If at least one of
already mentioned for SOC-related models[& and ex- the gradients ofG is larger thang,,.x, the site is called
plored recently in a similar context by Chapm&. metastable. It topples only if this state is the result of the

The additional feature of the proposed model is the emerreceipt of a grain, either from a neighboring site which had
gence of a spatial structure for the metastable configuratiotoppled, or when a grain was dropped on the site at the start
driven by the transport of grains through the system. A studyf an updating run. Metastable states do not topple when a
of this spatial configuration in and close to the stationarygradient larger thag,,,, develops as a result of the loss of
state is the main objective of the following sections. grains on neighboring site§i) g, is the minimum positive

The paper is organized as follows. In Sec. Il we describgyradient, which fixes the condition to stop the toppling; we
the toppling rule and its connection with related models. Incall it the activity threshold. Once a site starts toppling, it
Sec. Il we present the one-dimensionaD) variant of the  sends grains, one at a time, along the instantaneous maxi-

mum gradient ofG to its nearest neighbors, provided that

maxXG}>gmi,- If there is more than one instantaneous maxi-
*Electronic address: anton@ifin.nipne.ro mum gradient, a random choice is made among them. If one
"Electronic address: hbg@sun.ac.za site topples it will send grains to some of its nearest neigh-

Il. THE TOPPLING RULE
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bors. We refer to the process of relaxation of one site as #opplings. Here we are ensured thgt>N, 75, whereN, is
“toppling” and to the sites that have received sand grainsthe average number of time steps for the system to relax for
during toppling as “updated sites.” Their coordinates area given sizel.
kept in a list for the next step of the dynamics. We define the size of an avalanche as the total number of
In one time step all the updated sites produced at théopplings generated in a given relaxation process after one
previous time step are checked for stability and, if unstabledropping.
they relax according to the above algorithm. We specify that We stress that our toppling rule allows and introduces
once a site is unstable and chosen to topple the algorithsites with unstable gradients after one avalanche has taken
will finish the toppling sequence at the site and then willplace. They emerge as the neighbors of the topplaugive
move to another site. Physically, this is equivalent to neglectsites toward which the gradient is negative. As an unstable
ing the toppling time. site topples, the negative gradient increases in absolute
Because we always topple along the instantaneous maxialue, but the sites along such a direct@mnot receive any
mum gradient we can introduce a time order of the topplingsgrains and hence are not toppled, according to our rule.
On physical grounds it seems reasonable to assume that tiighen topplings in such an avalanche stop, such a site can
site that first receives a grain will topple first at the next timeaccordingly have a maximum gradient that is larger than the
step, if it is unstable. We model this using a first in, first outthreshold valugy,,4. We call such a site metastable—it can
list: the coordinates of the updated sites are stored sequepustain gradients larger than the threshold as long as it re-
tially in a list. In one time step the algorithm reads the listmains unperturbed. Physically, we associate this rule with a
sequentially from the first entry: if the current site is meta-certain local metastability of the medium through which
stable, it is toppled and the sites that are updated in thigansport takes place.
process are stored in the list for the next time step; if the We make the observation that the metastable sites may be
current site is stable, it is simply discarded from the list. Weimportant in the regions where there is no dropping of grains,
refer to this time ordered toppling rule by the acronymsince they can live much longer than the average time be-
TOTR. (Recall that a gradient toppling rule implies a non- tween two droppings on the same site.

Abelian sandpile where the order of toppling has definite As elaborated in the next two sections, this model has
consequences; see, e.g., Ré8s4].) properties similar to the extended version of the forest fire
Alternatively, we can disregard the time ordering and semodel described in Ref8], that is, quasiperiodic behavior in

lect at random a site from the list of updated sites for inspectime and a spiked avalanche distribution.
tion of its stability. In Sec. Ill we make a comparative study  To link further with previous studies, it is also of interest
of these two variants of the toppling rules in the 2D case. Wao understand the relation between our proposed model and
refer to this randomly ordered toppling rule by the acronymthe condition for SOC in sandpile models. Referer{@s0]
ROTR. present an analysis to establish the generic conditions a
In other words, we can consider one time step of themodel has to satisfy in order to present SOC. The authors
dynamics,At, divided intoN bins (N being the number of show that in two dimensions, or larger, and for conservative
sites of the latticg each bin containing at most the coordi- dynamics, an intrinsic spatial anisotropy is required to pro-
nates of one updated site since in a time intetw&IN we  duce SOC for models which can be treated perturbatively.
can assume that typically at most one site is active. An activdhe model we propose has a conservative toppling (thie
site generates a set of updated sites when topples. In thimise is also conservative in the region where no dropping
description the TOTR fills the bins of the next time step intakes place and evolves in two spatial dimensions under
the order in which the updated sites are produced at the cugonditions of anisotropy, but it does not present the features
rent time step; meanwhile the ROTR fills the bins of the nextof SOC for the avalanche distribution.
time step randomly. Evidently, most of the bins are empty as We think that the explanation of this anomaly resides in
the number of updated sites is much smaller than the systethe fact that the stationary state of this model cannot be char-
size and the algorithm discards the empty bins using the lisicterized as a perturbation of an interaction-free model. As
of updated sites. we present in full detail in Sec. 1V, the stationary state of this
Thus, to resume, at a given instant of time we have threenodel is characterized by the appearance of deep and narrow
kinds of sites in our systenti) inactive sites with all asso- valleys along the direction of grain transport. These features
ciated gradients less than, .y, (ii) metastable sites, which cannot be obtained as a perturbation of a diffusionlike relax-
have at least one associated gradient larger thap; and  ation.
(iii) active or unstable sites, which are the toppling sites at We also make the observation that in the proposed top-
the given instanfthey are perturbed metastable sjites pling rules there is no external noise term, e.g., similar to the
One observation about the times scales in the model iaoise term in the Langevin equation. The randomness in our
now in order. We can think in terms of the existence of threemodel comes from the selection of the toppling order in the
time scales. The smallest one is the time in which a site hasase of the ROTR, and from the random choice of the top-
toppled,r,. The second time scale is the surviving time of anpling direction in the case of a degenerate maximum gradi-
updated unstable site;. The dynamics of our model is such ent. Another source of randomness in these models is the
that 7> 7. The third time scale is the time between two “internal noise,” in the sense discussed in Rgffl], coming
droppings of grains on the lattice,. After one grain is from the fluctuations of the many particle dynamics which
dropped the system relaxes globally through an avalanche afiay be present even in the case of pure deterministic micro-
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scopic equations. There is no straightforward connection be- L=128 ——
tween the “internal noise” and the “external noise” term of L-2% -

a Langevin equation.

In connection with this theoretical aspect, we mention that
recently a model with metastable statésticky grains” is
the term used by the authgrsut with a height-driven top-
pling rule and dissipative dynamics was studied in REZ]
and shown to be in the directed percolation universality
class.

In the following sections we present a detailed discussion
of the 1D case and a statistical analysis of the mentioned
patterns of metastable states for the 2D case in the stationary
state and close to the stationary state.

LP(s,L)

FIG. 1. The avalanche size distribution in 1Dlat 128, 256,
lll. THE 1D CASE 512, and 1024 with the fixed ratio/L=0.1. We notice the peak in

We start our study with a one-dimensional sandpile. Wene top right corner of the plot.
choose a lattice of dimensidnwith an open boundary at
=L and with a wall atx=0. The grains are injected ran-
domly in the regionxe[1, w], with 1<w=L, called the
fr?; rggiiﬁgﬁhygghgr%ffﬂé iﬁbﬂgy;:;?;;g?‘li%xaéa%n&e simulation starts with the initigl condition specified_by a uni-
appearance of a metastable site in 1D lattice. For simplicitfor™ Slope of size 1 per lattice step along theaxis, the
we start with an initial stair configuration which has a mono-neight atx=L being 0. The initial slope along theaxis is
tonic step of ma§G}=2 descending from=1tox=L. This  Set to 0. We choose the stability thresheid,,=4 and the
configuration is marginally stable; if we drop a grain any- activity thresholdg,;,=1. (We have also performed simu-
where on the lattice an avalanche occurs. First we considerlations starting with an empty lattice; the stationary state is
restricted source zone where grains are only droppex at the same and only the transient regime is longéfe use
=1. A grain dropped at=1 will then topple untilx=L for ~ both toppling rules{i) with the time ordered toppling rule
the chosen configuration. At=L an extra toppling takes and(ii) with a random ordered toppling rule.
place sinceymin=1, and the toppling of the disturbed state  The grains are dropped randomlyxat 1, ye[1,L]. This
continues as long as the maximum gradient is larger thagource configuration allows us to explore the behavior of the
Omin- [Formally, the boundary condition is tha(L+1)  transport region of the sandpile under minimal perturbation,
=0, h(0)=%.] When the avalanche stops, we therefore segince only one grain topples at the boundary of the transport
that the gradient between the sites 1 andL is 3, hence we region and the metastable sites do not have their average
have a metastable site lat- 1. Now if we drop a new grain lifetime constrained by the average time between two drop-
at x=1, the same consideration shows that the metastablRings on the same site; hence the structure of the transport
configuration moves td.—2. The process continues until Zone is influenced only by a minimal flow of grains.

ior in 1D. We choose for study a rectangular lattice of dize
with an open boundary condition at=L and a wall atx
=1, with a periodic boundary condition along thexis. A

the metastable configuration reaches thesitd . After that The initial condition we start with can be viewed as a
a series of avalanches reconstructs the initial configuratiorf;ollection of interacting 1D sandpiles oriented along ihe
adding a grain at site, then atL—1, and so on. axis, and consequently one might expect to see two-

The characteristic time period of the system is controlleddimensional avalanches created by the interaction of differ-
by the time in which the metastable site travels from the sitéént metastable sites. _ _
L to the site 1. This kind of behavior is preserved if we use a Surprisingly we found that in the stationary state the sand-
source zone withw>1 but with the ratiow/L small. The Pile develops a structure of valleys along thedirection
avalanche size distribution is characterized by a peak at theeparated by terraces of sites in the metastable state. As one
end of the distribution suppoffsee Fig. 1, which results ~¢an see from Fig. 2 the valleys are not purely 1D; instead
from the avalanches produced while the metastable site &€y fluctuate slightly along the transverse direction and also
present in the transport zone between1 and L. The Show branched structures. Visual inspection of Fig. 2 shows
smaller size avalanches are produced after the metastable sifit the transverse fluctuations and branching are more pro-

has reached the source zone. Figure 1 shows that for fixddPunced in the case of the TOTR algorithm. .
rationw/L the avalanche distribution scales with After the system reaches the stationary state we notice

We close this section with the observation that the distincthat in the case of the TOTR the valleys do not change in

tion between the TOTR and ROTR is irrelevant in 1D sincetime except for small fluctuations which appear toward the

typically there is only one updated site in the algorithm. ~ OP€n boundary. In the case of the ROTR the valleys do
change in time even in the stationary state. We illustrate this

IV. THE 2D CASE in Fig. 2 where the snapshots) and (f) follow after 1¢
droppings on the snapshatis) and (e) in the stationary re-
gime. We observe that in the case of the TOTR the two
In this section we compare the behavior of the system irconfigurations are almost identical, while for the ROTR there
two dimensions with the simple and well understood behavis a clear difference between the two configurations around

A. General features
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FIG. 2. The patterns created by sites at the bottom of valleys for F!C- 4. The profile of the sandpile along the source lirel
a 512x512 lattice during the transient reginta), (d), and in the  (continuous lingand along the line next to ix=2 (dashed ling
stationary regime(b),(c),(€),(f). On the left side the dynamics is OF the TOTR(left) and ROTR(right). We show one moment in

TOTR and on the right side the dynamics is ROTR. The dots, oftedime of the transient regimé) and (d), while (b),(c) and (e),(f) are
merged to lines, mark the sites which have at least two negativé the stationary regime. The coordinate is the height in number of

gradients larger in absolute value thgig,, i.e., at least two neigh- grains. Note_theT change of thg profile hgight with t_ime, and the fact
bors are metastabléSee the text for discussion of the symbals)  that the profile is unchanged in the stationary regime.

We obtain further insight about the nature of the station-
the points denoted with the symbal. We return to this ary state if we analyze the time evolution of the height pro-
point when we analyze the cluster size distribution and théile alongz (perpendicular to the-y plang at the boundary
correlation length behavior. of the source zone. In Fig. 4 we show the time evolution of

Another observation which we can make from visual in-the height profile along for x=1 andx=2. We see that in
spection of the stationary patterns, is that the structure of théhe transient state, for both toppling rules, the source zone
valleys changes with system size. From Fig. 3 we see that fgix=1) has heights close to the heights of #¥e2 profile. In
L=128 the valleys are predominantly one dimensionalthis configuration a grain dropped in the source zone will
When the lattice size increases, transverse fluctuation ar@ove more probably along the axis, leaving the source
branches appear. zone in one or a few steps. In contrast, In the stationary

regime we see that a completely different configuration

TOTR ROTR arises. The average height of the source zone is significantly
smaller than the average height of tke 2 profile. A grain
dropped in the source zone will therefore first travel along
they direction, until it meets a minimum which is connected
with a valley[see Figs. &) and 4e)]. In the stationary state
the profile at the source remains unchanged for both the
L=256 TOTR and ROTR as Figs.(8), 4(c), 4(e), and 4f) show.
The data are taken from the same configuration presented in
Fig. 2.

We close the presentation of general features of the model
L-512 with an analysis of the avalanche size distribution in the
stationary state. Figure 5 shows for both dynamics that the
size distribution is not power-law-like, but rather similar to
the 1D cas€compare Fig. }, although with a richer struc-
ture of peaks. We remark that a scaling proportional with
lattice sizeL holds approximately for the plateau region and
the first peak in the distribution, as in the 1D case. Since the

: : valley length scales with, we think that this feature of the
X avalanche size distribution is determined by the propagation

. of the avalanches along the valleys.
FIG. 3. The structure of the bottom of the valleys as a function

of the lattice size_. From top to bottonl =128, 256, 512, 1024;

TOTR on the left side and ROTR on the right side. The source is on
the left side and the open boundary on the right side of each panel. Having presented a visual description of the valleys in the
The vertical lines mark the open boundary. previous subsection, we now consider a quantitative ap-

L=128 [, L=128

L=256 F= .|

L=512

T

Fcy o -E=1024

B. Cluster characterization
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FIG. 6. Number of cluster&op) and their total masghottom as
function of time for the TOTR and ROTR. In ascending order the
plots correspond to the lattice sizes-128, 256, 512, 1024.

spaced. We mention here that we are constrained to use
FIG. 5. The avalanche size distributiof® TOTR, (b) ROTR. single runs smce.the characteristic time in Whlch the system
The system size takes the values 128,256,512,1024. The plateau reaches the stationary state scales approximately with the

region and the first peak scale approximately with systemlsize ~ third power of the lattice linear size.
Figure 6 shows that the total mass of the clusters and the

. . .number of clusters have a jump before the stationary state is
proach. For a numerical description of the patterns shown in jump Y

. reached. The jump is more pronounced in the case of the
Figs. 2 and 3 we concentrate on the clusters formed by th?OTR and is clearer for large system size. We observe that
bottom of the valleys. We define a site to be at the bottom Oth i ¢ h the st t'g Y at .I ith the third
a valley if it has associated with it two or more negative € ime (o reac € stationary state scales wi e thir

gradients larger in absolute value than the threshold, i.e., &°We' of system size. This fact can be explained if we as-
least two neighbors are metastable. sume that the average slope Qf the.system converges to a
A set of bottom of the valley sites is said to form a clusterNonzero value as the system size is mcreased_; then the vol-
if they can be spanned by a path stepping only to neare$tme of the accumulated grains scales like which deter-
neighbors along the or y directions. mines the minimal number of time steps necessary to drive
We analyze the following quantities: the total number ofthe system to the stationary state.
clustersN¢(t) as a function of time, the total cluster mass In studies of this kind of model it is customary to test the
M(t) as a function of time, the longitudinal and transversedata for scaling behavidi(t,L)=L“f(t/L?. Our plot shows
correlation lengthsfy and &, , and, finally, the cluster size that one can define the dynamic scaling exporen8 for
distribution at a given timelN(s,t). the relaxation time, but a simple proportionality with the
We start with the time evolution of the total number of system size at a given power is not sustainable, although for
clustersN¢(t) and the total masdl (t) =2 sN(s,t). We  L=512, 1024 the assumption holds acceptalthe corre-
remind the reader that in this section a time step correspondsponding lines are parallel within a good approximation
to a grain drop and the subsequent relaxation, and therefotgowever, the scaling hypothesis does not hold for the system
we neglect the relaxation time per avalanche. size L=128, suggesting that boundary effects have a char-
The data were collected over a single run starting with theacteristic length of this order of magnitude. From Fig. 3 we
initial condition specified at the beginning of this section. Wesee that close to the source zone the valleys do not present
have collected the data for one point at time intervals Sbranching. We note also that close to the open boundary
X104, 1P, 1P, and 5<1(° for the system sizek=128, valleys do not form, which makes it plausible that the scaling
256, 512, 1024, respectively. To eliminate the short times strongly affected by finite size effects.
fluctuation we averaged at each point over a window of size For a geometric characterization of the clusters we define
10* steps from which we selected 100 moments equallithe following correlation lengths, following Reff13]:
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TOTR ROTR 10° m\

1 NG |
107

10 |

102

FIG. 7. Correlation lengthg; (top) and¢, (bottom) as function
of time [L=128(+), 256 (X), 512 (*), 1024 [@)]. Left panels
are for TOTR, right panels for ROTR. FIG. 8. Histogram of cluster sizes at four moments of time. We

taket, andt;, in the transient regime witlj(t;) <§(t,) andts, t,
in the stationary regime witl(t) <¢(t,). We mention that data
22 RizyssznS are averaged around each time montent e[ 1,4], as described at
§i2: S 1) the beginning of Sec. IV B.

2
ES Ss The transverse correlation presents the same kind of cha-
otic behavior. In any event, we see that=1 (which is

where Rﬁs is the mean square distance along the Iongitudi—phyS'C‘"leIy significantonly for the TOTR withL =512. Vi-

nal x. or transversev. direction between the sites belonin sual inspection of Figs. 2 and 3 shows that it is this situation
- &, o 9N9 i which a significant number of branchings are observable.
to one cluster averaged over all clusters of sizehich can

be expressed in the formula To elucidate this point further, we study, for both types of
dynamics TOTR and ROTR, the cluster size distribution at

various moments of time for the lattice size=1024. In Fig.

1 2 1 z 0 )2 8 we plot the cluster distribution at two consecutive moments

ne & 2wt X, =X |%. (2)in the transient regimet(=8.7x 1(F, t,=8.75x 10°) corre-
e sponding to a minimum and a maximum §f observed in

. ) o o Fig. 7, that is,§(t1) <§(t2), and in the stationary states(

Here the |n(§iex=[|,L indicates the longitudinal and trans- —7 gax 10°, t,=1.845<10°) with the same condition

verse dlrectlonsxﬂi denotes the coordinate of the sites be'g“(t3)<§u(t4) )

longing to theath cluster of sizes, andng is the number of The plots show that in the transient regime the states with
clusters with sizes. In other words, for each cluster from a larger §; have a significant population of large clusters for
given configuration of the lattice we compute its averageboth dynamics. In the stationary state in the case of the
square displacement from the center of mass in transverSEOTR the cluster distribution changes very little, while for
and longitudinal directions with E¢2). Next we average the ROTR the large size tail presents observable fluctuations.
over all the clusters from a configuration with weights speci-This observation seems to point to a signature for a station-
fied by Eq.(1). ary state of the ROTR in which large scale fluctuations ap-
Figure 7 shows that the longitudinal correlation lengthspear for a cluster of valleys, as shown in Fig.(%/e have
jump before the stationary regime for system sizes512  also checked this for other configurations.
and 1024, similar to the behavior of the cluster number and To summarize the two-dimensional behavior, we have
the total massgsee Fig. 6. studied the geometric and relaxation properties of the trans-
It is intriguing that the longitudinal correlation length port region of the sandpile. We found that as the system
shows chaotic behavior in the transient state as the systeapproaches the stationary state, clusters of deep valleys ap-
size increases, especially in the case of the ROTR, evepear. Specifically, we explored the time evolution for the
though we have averaged out the short time fluctuations. Ototal number of clusters, the total mass of the clusters, the
the other hand, the time evolution of the total number ofcorrelation lengthgtransverse and longitudinabf the clus-
clusters does not present fluctuations of the same relativiers, and the cluster size distribution at various moments of
magnitude(see Fig. §. We conjecture that the large fluctua- time. The main distinction between the TOTR and ROTR is
tion of the correlation lengths in the case of the ROTR isthe fact that the configurations obtained from the ROTR are
related to a high frequency of coalescence and breaking up strongly affected by fluctuations of the longitudinal correla-
clusters before the stationary state is reached. tion length, which we have shown to be associated with fluc-

cluster size s

Ns

2R? =
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tuation in the tail of the cluster size distribution. The avalanches produced in the resulting valleys have
The characteristic time to reach the stationary state scaleame-dimensional properties and show non-SOC behavior. We
with the system size ds?, with z=3, but the magnitude of believe that this is an example of a model in the strong cou-
the observed quantities does not follow a clear power lawpling regime which escapes the classification made in Ref.
type of scaling. The range of data we have does not allow ugL0] for models that can be treated perturbatively. Yet we do
to decide if this is due to strong correction from boundarynot have an exact mapping between our discrete model and
effects, or if scaling is genuinely broken. The setting in of athe continuum Langevin equations used in Hé&0]. This
chaotic regime at large complicates the analysis even fur- may be another source of the discrepancy. At the moment
ther. this is a purely numerical study of a descriptive nature. To
clarify the previous uncertainties further analytical insight
V. CONCLUSIONS seems to be required. It would, e.g., be interesting to deduce

a simple mean field kind of equation capable of explaining

We have analyzed a gradient-driven sandpile model withhe jrreqular time behavior at larde for the quantities de-
local metastable states using two variants of the topplingcriped in the paper.

rule: one which keeps the time order of the list of updated
sites and one which selects a site from the list at random. We
found that in 2D metastable sites generate a rough landscape
with deep valleys along which grains are transported. One of the authors, L.A., gratefully acknowledges the

The valleys are organized in clusters with a pronouncedospitality of the Department of Physics, Inha University,
development along the direction of grain flog ¥ &,). For ~ South Korea, where part of the work was done. L.A. also
the time ordered toppling rule, we found that transverse coracknowledges partial support from the European Community
relations develop as the system size increases. Also, for larggogram HPIF under Contract No. HPMF-CT-2002-01910.
system size we observed chaotic behavior for the correlatiodve acknowledge early discussions with Morne Pistorius and
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